INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 1765-1789

On the modeling of integrally actuated helicopter blades
Carlos E.S. Cesnik **, Sangjoon Shin °

& Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Room 33-313, 77 Massachusetts Avenue,
Cambridge, MA 02139-4307, USA
® Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Room 37-346, 70 Vassar Street, Cambridge, MA
02139, USA

Received 17 August 1999; in revised form 7 December 1999

Abstract

This paper presents an asymptotical formulation for preliminary design of multi-cell composite helicopter rotor
blades with integral anisotropic active plies. It represents the first attempt in the literature to asymptotically analyze
such active structure. The analysis is broken down in two parts: a linear two-dimensional analysis over the cross-
section, and a geometrically non-linear (beam) analysis along the blade span. The cross-sectional analysis revises and
extends a closed form solution for thin-walled, multi-cell beams based on the variational-asymptotical method, ac-
counting for the presence of active fiber composites distributed along the cross-section of the blade. The formulation
provides expressions for the asymptotically correct cross-sectional stiffness constants in closed form, facilitating design-
trend studies. These stiffness constants are then used in a beam finite element discretization of the blade reference line.
This is an extension of the exact intrinsic equations for the one-dimensional analysis of rotating beams considering
small strains and finite rotations, and now taking account of the presence of distributed actuators. Subject to external
loads, active ply induced strains, and specific boundary conditions, the one-dimensional (beam) problem can be solved
for displacements, rotations, and strains of the reference line. Analytical and numerical studies are presented to
compare the proposed theory against the previously established analytical models. Discrepancies are found for general
blade cross-section and discussed herein in details, especially for the piezoelectric actuation components. Direct results
of the present formulation are also compared with experimental data. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The technology of smart structures provides a new degree of design flexibility for advanced composite
helicopter rotor blades. The key to the technology is the ability to allow the structure to sense and react in a
desired fashion, improving rotor blade performance in the areas of structural vibration, acoustic signature,
and aeroelastic stability. More specifically, there have been several approaches in the literature to take
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Fig. 1. Active fiber composite: (a) mode of operation, showing axial extension along fibers and contraction transverse to fibers;
(b) SEM photo of the cross-section.

advantage of active materials for individual blade control (Loewy, 1997; Friedmann, 1997). The one of
interest in the present work is the integral actuation through the use of anisotropic actuators, particularly
through the use of active fiber composites (AFC) with interdigitated electrodes (Bent and Hagood, 1997).
This actuation concept, shown in Fig. 1, provides a feasible way of integrally actuating a rotor blade instead
of the direct use of piezoceramic crystals. The latter was extensively studied by Chen and Chopra (1993,
1997), following up on the work of Barrett (1990), in a 6-ft diameter two-blade Froude-scaled rotor model
with banks of piezoceramic crystal elements in +45° embedded in the upper and lower surfaces of the test
blade. There have been improvements in the actuation levels by using dual-layer actuators and the maxi-
mum experimental tip twist actuation was of the order of 0.5°, still below the 1° to 2° necessary for the
possible vibration control applications. On the other hand, the AFC concept obtains the level of authority
needed from the actuation. Basic material characterization and proof of concept of an integral twisted-
actuated rotor blade have been under investigation at MIT’s Active Materials and Structures Laboratory
(Rodgers et al., 1997; Cesnik et al., 1999).

In order to design and analyze those beam-like structures, an appropriate formulation is needed that
takes account of the presence of embedded anisotropic actuators distributed throughout the blade in a
consistent manner. Even though several approaches exist for passive blade modeling (Volovoi et al., 1999),
this is not the case when one is dealing with active blades. In fact, there has been few analytical models
developed so far to analyze a single-cell beam, and none for multiple-cell active beam (which is typical of
helicopter blades). The most popular class of single-cell active beam model encountered in the literature is
based on the passive beam structural modeling of Rehfield (1985). Examples of such are the works of Song
and Librescu (1993), duPlessis and Hagood (1996), and Wilkie et al. (1996). However, since Rehfield’s
formulation is known to be not asymptotically correct (Berdichevsky et al., 1992), there is no guarantee for
consistent accuracy on the results, even for the stiffness constants. Such theoretical deficiency could gen-
erate a significant discrepancy also for the actuation constants in the case of active beams. The model
developed and implemented by duPlessis and Hagood (1996) is selected for this study as a representative of
this class, and it is referred in this paper as modified Rehfield model.

The objective of this paper is to present a framework for analyzing two-cell advanced composite rotor
blades with integral anisotropic active plies for designing helicopter rotor blades. It supports the joint effort
between the US Army Vehicle Technology Center, at NASA Langley Center, and MIT in designing model
scale active twist rotor (ATR) blades for future wind tunnel testing in the Langley Transonic Dynamics
Tunnel (TDT). It also studies the discrepancies in the actuation constants arising from the modified
Rehfield model-based theories and the (asymptotically correct) present formulation.

The present analysis extends the previous work done for modeling generic passive blades (Cesnik and
Hodges, 1997; Hodges, 1990; Hodges et al., 1992). The approach is based on the two-step solution of the
original three-dimensional blade representation by means of an asymptotical approximation: a linear two-
dimensional cross-sectional analysis and a non-linear one-dimensional global analysis (Cesnik and Hodges,
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1997). The resulting model is expected to correctly predict the behavior of helicopter blades, accounting for
the presence of different materials (passive and active) and an approximation of the actual blade shape.

The cross-sectional analysis revises and extends the closed form solution of a thin-walled, multi-cell
asymptotic formulation presented by Badir (1995). The variational-asymptotical method (Berdichevsky,
1979) is used to formulate the stiffness constants of a two-cell cross-section with the active plies consisting of
piezoelectric fibers. This cross-sectional analysis is a specialized case of the general framework established in
Cesnik and Hodges (1997). It provides the expressions for the asymptotically correct cross-sectional stiff-
ness constants in closed form, facilitating design-trend studies. These stiffness constants will then be used in
a beam finite element discretization of the blade reference line. The exact intrinsic equations for the one-
dimensional analysis of rotating beams considering small strains and finite rotations developed by Hodges
(1990) and implemented by Shang and Hodges (1995) is extended to take into account the changes in the
constitutive relation. Subject to external loads, active ply induced strains, and specific boundary conditions,
the one-dimensional (beam) problem can be solved for displacements, rotations, and strains of the reference
line. Finally, these results could be combined with the information from the cross-sectional analysis in a set
of recovering relations for stress/strain distribution at each ply of the blade. This structural representation
will serve as the basis for the future aeroelastic blade design model.

2. Present formulation
2.1. Cross-section analysis

Stiffness constants for an anisotropic thin-walled two-cell beam are obtained from a variational-as-
ymptotical formulation originally presented by Badir (1995). Herein, the original formulation is expanded
to deal with active materials, the final expressions for the stiffness constants are corrected for misprints, and
a validation study of such a formulation (not presented in Badir (1995)) will follow in the next section. In
this section, the main steps of the cross-sectional analysis derivation are presented based on a linear beam
formulation. Even though the one-dimensional (1-D) beam formulation that follows is intrinsically non-
linear, there is no loss of generality at this level to use a geometrically linear beam assumption.

Consider a slender thin-walled elastic cylindrical shell as shown in Fig. 2. It is assumed that

d h h

< 1, y 7 < 1 (1)
where L is length of the shell, / is thickness, —k(s)/2 < & < h(s)/2, R is the radius of curvature of the
middle surface, d is a characteristic cross-section dimension, and s is defined in Fig. 2. The tangent vector t,
the normal vector n and the projection of the position vector r on t and n are expressed on the Cartesian and
curvilinear coordinates as

<1,

dr dy, . . . dy,
=G T M trke= gk ok )

dy dz dz dy
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where iy, i,, and i, are unit vectors along the undeformed beam reference frame.
The energy density of a three-dimensional (3-D) elastic body is a quadratic form of the strains

U = LEM Mg (3)

where the material properties are expressed by the Hookean tensor E¥¥ and i,j,k,[ = 1,2,3. The me-
chanical strain a,(jm) is the difference between the total strain ¢; and the non-mechanical strain s,(;-lm) , ie.
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Fig. 2. Two-cell thin-walled cross-section beam.

b =6 — ey, (4)

and the total strain can be written in terms of two-dimensional (2-D) strain measures as
& =7y T épijv (5)

where 7;; is in-plane strain components, and p;; is the change in the shell surface curvature.
Considering the non-mechanical strain coming only from piezoelectric actuation, the expression of non-
mechanical strain 85_;"“) from a linear piezoelectric constitutive relation (Jaffe et al., 1971) is

&ij = S,»Ejk;O'k/ + dy;Ex, (6)

where ¢; is the total strain tensor, sj;, is the elastic compliance tensor at constant electric field Ej, a;; is the
stress tensor, and dj; is the piezoelectric electromechanical coupling tensor. The first term in the right-hand
side of Eq. (6) represents mechanical strain 82“), and the second one represents the non-mechanical strain,
which will be denoted by sf;f” since it results from actuation only.

The 3-D strain energy is then minimized with respect to ¢; (the through-the-thickness stress components
are considerably smaller than the remaining components):

U= n}in U= %D“ﬁ}"ss%’)sg), (7)

where D**7 is the 2-D Hookean tensor (Badir, 1995), and «, 8,7, = 1,2.

From practical considerations, one may assume that only E; (electric field along the piezoelectric fibers)
exists. The 2-D strain expression becomes

(m)

&8 = Eup — giaf) = 71/; + 5pc{ﬁ — dlo(b’El- (8)

Substitute Eq. (8) into Eq. (7) and integrate over the thickness ¢ to get a shell energy @ per unit of middle
surface area
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20 = {<D1ﬁy6>?xﬁ - 2<D1ﬁwd1}'5E1>}7y6 + 2{<Daméé>?xﬂ - <D1ﬁwd1}'5Elé>}py6 + <Daljy5§2>paﬁpyé + T(El)a
)

where

th(s)/2
()= [ (e (10)

The function ¥(E;) in Eq. (9) represents the quadratic terms in the electric field. Since in the actuation
problem the field is prescribed, it becomes inessential in the derivation of the beam constitutive relation.

From the variational-asymptotical method (Berdichevsky, 1979), the shell energy functional after the
first-order approximation is

201 = II?linZQp = {47, — 249}y, + 2877, + {C7), — 2C¥ )y, — WL (E)).
22
The variables 4, B, and C represent the axial, coupling and shear stiffness, respectively, as described in

Badir (1995), while the actuation contribution to the energy is represented by the new terms 4®, C®, and
¥, (E,) as follows:

_ 1111 <D”22>2
A= (D) - (D?22)
— 1112 <D1122> <D1222>
B=2D?) -~ 2
<D1222)2
C= 4<D1212> —4 (D222) ’ (1
A(a) _ Dll}'éd E) — 1122> D22y5d E
*< 1yo 1> <D2222>< 1y 1>7
C(a) _ 2<D127‘6d E > o 2< 1222> <D22ydd E >
= 1oL (D7) 1psLe1)-

Recalling that the shear flow Ny is obtained as a constant and the hoop-stress resultant N, vanishes,

0P _ - a

Ny == == (A(s)71, + B(s)7,) — A9(s),
o(7n)
0P 1 1 (12)
1 — - a
Ny, = ) E(B(S)Vn + C(s)7,) — EC( (s) = constant.
The warping correction function w; in the first-order approximation becomes

ow, 4 C 2 dy dz
gzaconstant—2guﬁ+EC<)—uéa—%&—qf)/m (13)

Using the single-value condition on the function wy,
an
——ds = 14
7{ Ylds=0 (14)

for the ith closed cell (I for first cell and II for second cell) determines the expression of the “constant” in
Eqgs. (12) and (13).
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The displacement field relating the shell variables and the beam ones is determined as follows, which
includes the warping field associated with extension gi(s), torsion G(s), and bending g(s), g3(s), respec-
tively, as well as the displacement component directly associated with actuation, v(la) (s):

o1 = i (x) = Y5y (x) — 2()ut5 (x) + Gls)' (x) + 1 (5)ut, (x) + ga(s)uy (x) + gs(s)us () + 01" (),

B dy dz B dz dy (15)
vy = U (x) P u3(x) i P(X)rn,  ve = us(x) i uz(x) a4 P(x)r,
where
_ 2{(by + bs)fi + baf2} g = 2{(by +b2)fo + bof1}
YT (by + by)(by + bs) — B2 27 (by + by)(by + bs) — b2’
fi= %CC(E‘) ds, = 7{ cC@ds, (16)
I II
Jo{2g1 — CW(1)}e(r)dT at s = 0 — s; (left branch),
() = { fo{2(g1 — &) — CO(D)}e(r)dr at s =s; — s, (web),
Jo{2g, — C@(1)}c(r)dr at s = s, — s3 (right branch)

with b;, ¢ defined in Appendix A, and each integral being evaluated along the corresponding branch of the
two-cell cross-section. The integration subscripts I and II denote anticlockwise integration over the left and
right cells, respectively (Fig. 3).

The strain field associated with Eq. (15) is

T =y (x) = y(s)us(x) — z(s)us(x),

— dG / dgl / ng " dg3 " dU§a>

%y, = — Uy =l =+ — 1
Vs (ds+r”)¢+dsul+dsu2+dsu3+ ds ’ (17)
7&\' = 0'

The constitutive relations can be written in terms of stress resultants and kinematic variables by relating the
traction Fj, torsional moment M, and bending moments M,, M; to the shear flow and axial stress as
follows:

s=0 5=583

5=58,

Fig. 3. Branches for integration of a two-cell thin-walled cross-section.
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Fi a¢2 %/Glldde—leldS
- o
<P
a 2 f/alsrn déds_lesrn

(18)
6(1')
M = 2 %/6112 dfds—%an
6<I>
=3 ,3— ?{/0107 )déds = — lel.V
Uy
Substituting Egs. (12) and (18) into the first equation in Eq. (18), one gets
k= leldS = %{Avn + By, — AW }ds
/ " " 1 dG dgl u dg2 " dg? " dU a
-/ A{”ly”zz”ﬁ*z{(ds ">¢ T g gy A
! " " B d a
= Knuy + Ki2¢' + Kisuy + Kyauy +7{ (2 :11 — A >>ds (19)

and similarly with the other three moment equations. The first four terms in the final part of the right-hand
side of Eq. (19) correspond to the stiffness coefficients for an anisotropic two-cell beam. (Detailed ex-
pressions of K;; and relevant parameters are given in Appendix A.) The last term (following those) results
from piezoelectric actuation and can be regarded as a forcing component. The general form of the con-
stitutive relation can be written as

F Ky Kip Kiz Ky u Fl(a)
!
M| _ | Ko Kn Kyn Ku| ) ¢ | _ M (20)
M, Kis Ky Kiyiz Ky —uy Mz(a)
M; Ky Ko Ky Ky uh M
3

Explicit expressions of piezoelectric actuation contributing to the constitute relation are given by

B B B
F(a):j{ A® _Z c@ g 2 %7(1 2 f—d
) { c s+ gIICS+ g2 HCS’

Ml(a) = —2g14a — 284,11,

. B B 21
M = 7?{ AW — = c@ zdszglf —zdszgzj{ —zds, 2
C L C
<a>_7{{ w_58 <a>} ]{_ L
MY = A C% byds + 2g yds +2¢g yds,
3 C 'Ji C *hu €

where integral without any subscripts § denotes over-all-section evaluation, which is a summation of
evaluations over s =0 — s, s = s; — s, and s = s, — 3.

2.2. 1-D Beam analysis

A non-linear one-dimensional global analysis considering small strains and finite rotations is proposed
here as a direct expansion of the mixed variational intrinsic formulation of moving beams originally



1772 C.E.S. Cesnik, S. Shin | International Journal of Solids and Structures 38 (2001) 1765-1789

presented by Hodges (1990), and implemented by Shang and Hodges (1995). The notation used in this
section is based on matrix notation to be consistent with the original derivation. The main steps of the
formulation are repeated here, and emphasis is given at the points where the effects of the active material
embedded in the structure change the equations.

As shown in Fig. 4, a global frame denoted a is rotating with the rotor, with its triad axes labeled as a;, a,
and a3. The undeformed reference frame of the blade is denoted b, with its axes labeled as b,, b, and b5z, and
the deformed reference frame denoted B, with its axes labeled as B;, B, and Bj, though not shown in the
figure. Any arbitrary vector represented by its components in one of the basis may be converted to another
basis by using appropriate transformation matrices. For example, C" is the transformation matrix from a
to b, and CP* is that from a to B. There are several ways to express the transformation matrices. C® can be
expressed in terms of direction cosines from the initial geometry of the rotor blade, while CB* contains the
unknown rotation variables.

As described in detail in Hodges (1990), the variational formulation is derived from Hamilton’s principle
which can be written as

/ ’ / 8(K — U) + 5]dx,di — A, (22)

where #; and ¢, are arbitrarily fixed times, K and U are the kinetic and potential energy densities per unit
span, respectively. A is the virtual action at the ends of the beam and at the ends of the time interval, and
SW is the virtual work of applied loads per unit span.

Taking the variation of the kinetic and potential energy terms with respect to y and k, one gets the
generalized strain column vectors, and with respect to 3 and Qg, the linear and angular velocity column
vectors:

U\ " AN oK \" oK \'
Fo= | — Mg = [ —= Pa=(— Hy=| — 23
’ (w) ’ ’ (6:«) o <aVB> o (aQB) ’ @)
where Fg and My are internal force and moment column vectors, and Pg and Hp are linear and angular
momentum column vectors.

Fig. 4. Global blade frames of reference.
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The geometrical exact kinematical relations in the a frame are given by

7 = CP(C%e +u) — e,

0
K*:Cba A_E 0/
1+20 )

4

24
Vi = CP (v, + 1y + 0auty), 4

0

A—0\ .
Qp=C" 2 10+ CB,,
145

where u, is the displacement vector measured in the a frame, 6 is the rotation vector expressed in terms of
Rodrigues parameters, e; is the unit vector [1, 0, O]T, 4 is the 3 x 3 identity matrix, v, and w, are the initial
velocity and initial angular velocity of a generic point on the a frame. The ( ) operator applied to a column
vector is defined as

N 0 -7y 7
Z=|2z 0 -z
-7 Zi 0

To form a mixed formulation, Lagrange multipliers are used to enforce V3, Qp, y and x to satisfy the
geometric equations in Eq. (24).

Manipulating the equations accordingly (Shang and Hodges, 1995), one can obtain the a frame version
of the variational formulation based on an exact intrinsic equations for dynamics of moving beams as

5]
/ oI, dr = 0, (25)
i
where
I
e {SMTCTC““FB +8u) [(CTC"Py)" + ,CTCPRy] + 8, CTC*My — 39, CTC(& +7)Fy
0

+ 80, [(CTC™Hy)" + 3uCTCHy + CTCP TPy | — BF, [CTC™ (e +7) — Cel]

T 0 00" SV _
—OF, uy — M, (A +35+ T) Cc — SM.0 + OP, (CTC™Vy — v, — Doty
=T . =T 0 00" T ~ab =T . T T
_6Pa7/la+6Ha A_E—’_T (CC QB—wa)—SHaQ—Suafa—&pama dXI
- — N
— | (sulFu + 8P M, — SFyu, — 50, 0) ‘0 (26)
and the rotation matrix C is the product C**CB* and can be expressed in terms of 0 as
( | e ) A—0 4+
3 2
C= . (27)

0To
1+ %L

In Eq. (26), f, and m, are the external forces and moment vectors, respectively, which result from aero-
dynamics loads. The ( )* means derivative with respect to time. The generalized strain and force measures,
and velocity and momentum measures are related through the constitutive relations in the following form:
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B\ _ 7R P\ _[ma 0]V
()} -{ ) {0
and these expressions are solved for y, x, V3, and Qp as function of the other measures and constants and
used in Eq. (26). The stiffness [K] is in general a 6 x 6 matrix, function of material distribution and cross-
sectional geometry. As described in Hodges et al. (1992), the 6 x 6 stiffness matrix is related to the 4 x 4
one. The latter is used in this paper, where the stiffness matrix and column vector for the piezoelectric

actuation are described by Eq. (20).
Adopting a finite element discretization by dividing the blade into N elements, Eq. (25) is written as

[5)
/ > 8;de =0, (29)
n i

where index i indicates the ith element with length A/;, 811, is the corresponding spatial integration of the
function in Eq. (31) over the ith element. Due to the formulation’s weakest form, the simplest shape
functions can be used. Therefore, the following transformation and interpolation are applied within each
element (Shang and Hodges, 1995):

x=x,+ &AL, dx=ALdE, () =— (), (30)

Ouy = Ou;(1 — &) + dupi &, uy = uy,

@a - @,—(1 - f) +wi+lév 0 =0,

3F, = 0F,(1 — &) +8F; .1, Fa =F,

My = 3M;(1 — &) + M1 &, Mg =M,

ﬁa = ﬁh P =P,

@a = @i; Hy = H;,
where u;, 0;, F;, M;, P, and H; are constant vectors at each node 7, and all  quantities are arbitrary. ¢ varies
from 0 to 1.

With these shape functions, the spatial integration in Eq. (29) can be performed explicitly to give

N
S {Sulfu + 80, fy, + SF, fi, + M, fu, + 5P, fy, + 5H, fi, + Sul 1 fo

i=1
—T —T —T
+ 6¢i+l<fl//1+1 + 6Fi+1fF}+l + 8Mi+1fMi+l}
T oA —T - —T —T A ta =T~ =T, =—Ta
= 67/l1\/+117N+1 + 61//N+1MN+1 — 6FN+1MN+1 — 6MN+16N+1 — 51/{1171 — 6!//1M1 + 6Fl uy — 6M1 01, (31)

where the f,,, fy.,...,fu,., are the element functions explicitly integrated from the formulation and de-
scribed explicitly in Appendix A.

In each element function, y and x should be replaced with a form that is a function of F3 and Mp using
the inverse form of Eq. (28), along with the piezoelectric forcing vector Féa) and MI(;‘). So does V3 and Qp
with a form about Py and Hp. Detailed expressions of the element functions in Eq. (32) are shown in
Appendix A with the changes caused by the presence of actuators embedded in the structure.

Since each 6-quantity is arbitrary, Eq. (32) yields a group of equations that can be written in operator
form as

G(X,X,F) =0, (32)
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where X is the column matrix of unknowns and G is a column matrix of functions. F is a column matrix
containing the external nodal loads. Both X and G are of dimension 18N + 12, in the case of a cantilever
beam.

The solutions of interest of Eq. (32) can be expressed as a combination of two components:

X =X +X(), (33)

where X represents the steady component, which is independent of time, and X(¢) is the transient com-
ponents of the solution, or, the perturbed motion, which contains the time dependency.
In the steady state, X(¢) = 0, and Eq. (32) becomes

G(X,0,F) =0 (34)
or simply,
G(X,F)=0. (35)

Following the solution procedure for the non-linear equation adopted in Shang and Hodges (1995), the
use of the Newton—Raphson method requires gradient information. The Jacobian matrix can be derived
explicitly by differentiation:

oG
- 5] (36)
leading to a very sparse matrix, that enables an efficient calculation of the solution. Note that the presence
of actuation on the blade changes the original terms of the Jacobian in a similar manner it does in Eq. (32).

The solution from the 1-D beam analysis provides blade displacement and generalized stress fields due to
external loading and piezoelectric actuation, which are of interest in the analysis of static and dynamic
deformations, dynamic stability, and aeroelastic stability.

3. Analytical study on actuation constants
3.1. Reduction of actuation formulation

The present two-cell cross-section model yields the constitutive relation based on a 4 x 4 stiffness matrix
and an additional column vector associated with the actuation effects as in Eq. (20). The formulation
adopted in the modified Rehfield model is based on a 7 x 7 stiffness matrix, where (two) transverse shear
and restrained warping degrees of freedom are explicitly added to the four classical degrees of freedom.
Therefore, a consistent condensation to a 4 x 4 matrix is necessary for a meaningful comparison between
them. This condensation is implemented through minimization of the potential energy with respect to the
extra degrees of freedom as described, for example, in Hodges et al. (1992). A 7 x 1 actuation vector can be
reduced to a 4 x 1 representation in a similar procedure. The analytical reduction procedure on the
modified Rehfield model results in reasonably complex expressions for the actuation components. The
4 x 4 based expressions of both theories are presented in Table 1, and the reduced equations for
the modified Rehfield method is based on the assumption of a beam without twist-shear coupling. Also, the
nomenclature used in each expression is identified and substituted with common symbols. As a result, one
can directly compare the four components of the actuation vector for the case of a single-cell active beam.

As an example of the derivation of the results presented on Table 1, consider the actuation twist mo-
ment, Ml(a) (remaining actuation components can be treated similarly). The expression for Ml(a) in the
modified Rehfield’s single-cell beam model is as follows (duPlessis and Hagood (1996)):
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Table 1
Analytical expressions of the actuation components for single-cell active beam
F® Present $ADds — FECWds + (§2 ds/ $Lds) f CW ds
Modified Rehfield $ADds — (§C@)ds/ §C(2)*ds) § CW(@)ds — (§ C(©)ds/ § C(E)*ds) § CW (&) ds
M Present ($LCds/ $Lds)a.
Modified Rehfield ($5-CWds/ $ 5 ds)4
M Present $AWzds — $ECWzds + (§Ezds/ §Lds) §LCWds
Modified Rehfield $AWzds + § {(ED"dy 5By ) — ((EDP°dy,5Er) /(DP2)) H(Z) ds
M Present —$A4Wyds+ §ECWyds — (§Lyds/ §Lds) §LC™ ds
Modified Rehfield — fA(a)de + lf’ {<E_,D117(5d17(5E1> — (((‘;Dzz?édly(gEl >/<D2222>)}(%) ds
N(a>)* 1 ds
@  _ wye (240N o V) G
Minas = V) (=2 ) e = B ), 37)
r I' Get S

where I' represents the cross-section contour as well as the actual mid-plane contour length of the single
cell, and

a)\* a A a a ) a 50
(N =N - A% N® ., N = (D"dysE), NO = (Ddy,E,). (38)
The effective shear stiffness G is defined as follows (Smith and Chopra, 1990):
A,) A Ap A As)
Gegr = h(s) A&f(T), Ah:A”f(u),AézAmf12%,A&:A“7LEL, (39)
A, A Az A

where 4;; corresponds to the elements in [4] derlved from the classical laminated plate theory (Jones, 1975).
On the other hand, the expression of M corresponding to the single-cell cross-section from the pre-
sent model can be derived as follows:

Ml(?,)resem = =2g14a — 2824 = —& % rpds — g ]{ rpds.
I il

In case of single-cell cross-section, b, — oo since the integral over the web (s = s; — s,) vanishes. Therefore,
from the definition of g; and g, in Eq. (16),

2f1 + /> f1 + />

g1 = b1+b5’ & = b1+b5
one gets
S3
Ml(a>resem = fl +f2 / dS +/ Y ds| = -2 f]" f %Fn ds. (40)
P bl + bs 5 $ ¢ds

Comparing both expressions, Eq. (37) and Eq. (40), the corresponding elements are equivalent to one
another. That is, (—24) in Eq. (37) is equivalent to —2 §,.r,ds in Eq. (40) for a single-cell cross-section.
From the definition of C® (Eq. (11)), the integral in the first term leads to

(D thgE) = (D +D" s+ D'+ D) 1)

which is equivalent to N ) and so does (D*°dy ;E5) to N@ Therefore C® in Eq. (40) is equivalent to
2 (Nha )" in Eq. (37). Fmally, the comparable expressions for M from both models result in

Ml(e;z) hfield :f@CddsA Ml(a) :35%(3(3 dSA (41)
ehfiel 1 e resent 1 e
$ e ds P §&ds
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As one can see, the form of the equations is the same, and the difference lies on the definitions of C and
Ger. From Eq. (11),

(42)

Comparing Eq. (42) with Eq. (39), C corresponds to the first term of G by its definition and this already
indicates a discrepancy between the two models. This is the same problem found with Rehfield’s model for
the torsional stiffness term (Berdichevsky et al., 1992). An overall analysis of these discrepancies is carried
out in details in the next section.

3.2. Analytical examination of actuation components

As one can see from Table 1, the expressions do not coincide in general and this can be attributed in large
by the different (out-of-plane) warping functions used in the two formulations (inplane warping became
negligible due to the thin-walled assumption). Rehfield (1985) uses an ad hoc warping function, while the
present asymptotical method calculates it from the basic original shell statement. Discussion of the dif-
ference in the warping function between the asymptotical formulation and others, including Rehfield
(1985), can be found in Berdichevsky et al. (1992). However, for certain configurations, the difference
vanishes and the formulations coincide. This is definitely the case for isotropic beams, where all the terms
are identical. For Fl(a), the leading term is the same, but the two following ones are totally different. The
terms in the present approach comes from the effects of warping associated with extension. The terms in the
modified Rehfield are associated with the extension-shear coupling. So, all those terms will vanish and
the results coincide when there is no extension-shear coupling present in the lay-ups (B = 0). For Mfa), the
two expressions will coincide when the beam has constant stiffness and thickness along its cross-section
circumference (then C = G). Finally, for Mz(a> and M (a), the leading terms are identical, but the remaining
ones are totally different in nature. The second integral on the modified Rehfield method comes from an
attempt to introduce ad hoc corrections due to thickness effects (thick-wall effects — duPlessis and Hagood,
1996), and it will not be considered in this comparison. The two other terms in the present formulation
come from the warping associated effects, and there are two situations when they will disappear from the
formulation: (i) there is no extension-shear coupling (B = 0); and/or (ii) the beam has a constant stiffness
(including the active layers) and thickness distribution along the cross-section circumference. As one can
see, for a generic lay-up, the popular Rehfield-based models will present qualitative discrepancies from the
asymptotically correct one. The level of impact of such discrepancies can only be quantified numerically.

4. Numerical results

In order to validate the formulation, a verification process is carried out in each step of the development.
The numerical results are divided as follows:

o two-cell box beam, which numerically validates the stiffness constants of the passive multi-cell beam for-
mulation;

o single-cell active beam, which provides numerical and experimental comparisons for both the stiffness
constants and the actuation constants, and also shows the trend of discrepancies between actuation con-
stants calculated from the different models;

e one-sixth Mach-scaled two-cell CH-47D active blade, which provides experimental results of a realistic
active helicopter blade for comparison with the present formulation.
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4.1. Two-cell box beam

The formulation for the passive stiffness coefficients for an anisotropic two-cell beam used here was first
derived in Badir (1995). However, the author does not validate the closed-form results presented there. So,
after rederiving and making corrections to the stiffness constants expressions, numerical tests were per-
formed for two-cell beams without piezoelectric actuators. The present results are then compared with the
ones from variational-asymptotical beam section analysis (VABS) (Cesnik and Hodges, 1997), a more
general asymptotically-correct finite-element-based cross-sectional analysis intended for modeling generic
geometries (including multiple-cell), which has been validated extensively (Volovoi et al., 1999).

As an example, consider the two cell box beam configuration represented in Fig. 5, the material prop-
erties of which are given in Table 2. VABS was run with the cross-section being discretized with 364 six-
node isoparametric elements for a total of 909 nodes.

A comparison of the stiffness coefficients from both theories is provided in Table 3. The present for-
mulation is in good agreement with VABS, with the errors well within the difference expected for this kind
of thin-walled cross-sectional formulation (Cesnik and Hodges, 1997). Results for other cross-sections
could be shown, but the conclusion will be similar to this one due to the nature of the asymptotical for-
mulation. The limiting assumption is that the thickness of the wall compared to the cross-sectional char-
acteristic dimension must be small when compared to unit.

4.2. Single-cell active beam

For a preliminary assessment of the piezoelectric actuation change in the constitutive relation, results
from the present formulation are compared against the modified Rehfield model duPlessis and Hagood
(1996).

[+45]:

N

[-45] 2 [+45/-45] s [-45] 2

~ ~ ~
~_

[-45]2

<~ 25 mm —

<~—— 25mm —=—— 25mm —*

Fig. 5. Two-cell thin-walled box beam definition.
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Table 2

1779

Properties of AS4/3506-1 graphite/epoxy — “L” direction is along the fibers, ““T”” direction is transverse to the fibers, and ““N”’ is normal

to laminate

ELL = 142 GPa
Exn = Err = 9.8 GPa
G]_T = GLN = 6.0 GPa

GTN = 4.80 GPa
ver = vin = 0.3
VTN = 0.42

Ply thickness = 0.127 mm

Table 3

Non-zero stiffness results (N, Nm, Nm?) for two-cell box beam (1, extension; 2, torsion; 3, 4, bending)

K;; Present VABS Difference (%)
Ky 8.472 x 10° 8.477 x 10° -0.1
Ky —1.828 x 10° —1.794 x 10° +1.9
K3 6.395 x 102 6.337 x 10° +0.9
K» 1.299 x 10? 1.278 x 10? +1.6
K 4.547 x 10! 4.461 x 10! -1.9
K3 9.631 x 10! 9.567 x 10! +0.7
Ky 2.075 x 107 2.070 x 10? +0.2

The test case chosen is an airfoil-shaped cross-section with piezoelectric actuators attached at the upper
and lower surfaces. This is one of the model beams fabricated and tested by duPlessis and Hagood (1996)
using active fiber composites. In each pack of AFC, the piezoelectric (PZT-5H) fibers are aligned in +45° in
order to maximize the actuation in twist. The cross-sectional geometry is shown in Fig. 6, and the material
properties are presented in Table 4. The predicted stiffness coefficients and forcing vector induced by an
electric field of —1800 V/1.114 x 10~* mm are presented in Table 5. Herein, the results corresponding to the

AFC[+450];

E-Glass[00]1

Fig. 6. Single-cell airfoil-shape cross-section beam.
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Table 4
Material properties used in the single-cell active beam (Q;; are the laminate reduced stiffnesses of the actuator pack)
E-glass (#120) Ep 14.8 GPa
Er 13.6 GPa
GLT 6.0 GPa
VLT 0.19
toly 0.2 mm
AFC On 32.8 GPa
(PZT-5H) On 6.26 GPa
Q'_’Z 17.3 GPa
Q66 5.5 GPa
ds 381 pmV’l
ds —160 pm v-!
toly 0.17 mm
Table 5

Non-zero stiffness (N, Nm, Nm?) and forcing vector (N, Nm) results for single-cell active beam cross-section — (Kj;: 1, extension; 2,
torsion; 3, 4, bending)

K Present Modified Rehfield Difference (%)
K 7.552 x 10° 7.586 x 10° 0.4
K 4.541 x 10! 4.574 x 10" 0.7
K» 1.848 1.848 0.0
K3 3.996 4.021 0.6
Ky 1.487 x 10 1.490 x 102 0.2
F® —3.255 x 10' —4.117 x 10' 209
M —1.170 x 107! —1.179 x 107! -0.8
M —2.557 x 10°? -3.192 x 10°? -198

modified Rehfield model were treated with the condensation procedure explained in the previous section.
Furthermore, tension axis was used for the beam reference line due to restrictions on the formulation of the
modified Rehfield model (duPlessis and Hagood, 1996). This comes from the original assumption on the
passive beam modeling by Rehfield (1985); however, it is not a restriction for the present formulation.

From Table 5, the stiffness matrix reveals that this blade presents extension-shear, extension-torsion and
shear-bending couplings, and the results for the stiffness constants show very good agreement between the
two formulations. In fact, this level of agreement mainly on the torsional stiffness is a coincidence for this
case, due to the lay-up used. (The analytical rationale for such coincidence is discussed in the previous
section.) In general, the torsional stiffness will be different since Rehfield’s torsional warping only coincides
with the asymptotically correct one for laminates with specific characteristics.

Next, one should consider the quantitative aspects of the discrepancies described above. Two different
actuation modes are considered here. The first one is mainly twist actuation, responsible for the original
+45° orientation of active plies. The twist actuation is obtained through applying the electric field of the
same sign as the sign of the angle of the active plies in the upper and lower skin. As a result, a significant
amount of actuation is obtained in twist, M, @ as well as extension, F The latter is con51dered to result
from an extension-twist coupling. The other two components in bendmg, “ and M3 , are of negligible
magnitude. The numerical results are presented in Table 6 (the results of the same twist actuation are also
included in Table 5 for completeness), in which a reasonably good agreement is shown for Ml(“). However, a
greater discrepancy appears for F @) and further numerical analysis reveals that the second integral in the
present formulation plays the main part in the discrepancy. It is also worth noticing that, for M and MY,
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Table 6
Actuation vector components for the single-cell airfoil-shaped beam
Type of actuation Analysis model F® M@ M M
Twist actuation Present —3.255 x 10! 1.170 x 107! 0 —2.557 x 1073
Modified Rehfield —4.117 x 10! 1.179 x 107! 0 —3.192 x 107*
Bending actuation Present 0 0 —8.350 x 1072 0
Modified Rehfield 0 0 -9.243 x 1072 0

the contribution from the second integral in the modified Rehfield model is not significant in this case due
to the very thin wall of this airfoil-shaped cross-section.

The cross-sectional results from Table 5 can be used in the 1-D beam analysis that includes the effects of
embedded actuation. The corresponding global (1-D) twist results are presented in Fig. 7, where it shows
the variation of the blade tip twist as function of applied voltage in the AFC. As one can see, there are no
significant differences between both theories. Both predictions are slightly higher than the experimental
measurements and this may be partially attributed to the fact that the foam core present in the blade
(originally used to facilitate blade manufacturing) has not been modeled by either formulations. However,
both theories compare fairly well with the experimental results. If one looks at the extensional deformation
due to F1<a), that would show much higher discrepancies than the ones found in Fig. 7. However, the ab-
solute values of deformation are small and not of practical concern for this example.

Another possible way of actuating the same structure is in bending in which the electric field has opposite
signs as compared to the previous case, inducing considerable bending in the flap direction. Table 6 also
shows the numerical results of this case, and the only non-zero component is the flapping actuation Mﬁa), as
expected. However, a discrepancy is also found and this results from the second integral in the present
model, similarly to the Fl(a> case described above. The integral including the effect of the thickness is still
ineffective in the modified Rehfield model. Experimental data for the bending actuation is not available at
this point and future experiments for this blade are necessary to further assess the accuracy of the analyses.
However, a numerical estimation of tip flapwise bending deflection shows significant discrepancies between

— Present 7
144 - - - . duPlessis & Hagood [1996] @
) Experimental ] ’.,
1.2 77
~_~ ’ ’ .
o 1 "
) "
E v
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208+ /’
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0.6 7 e
0.4
0.2
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Fig. 7. Tip twist of the single-cell active beam under twist actuation.



1782 C.E.S. Cesnik, S. Shin | International Journal of Solids and Structures 38 (2001) 1765-1789
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Fig. 8. Flapwise deflection of the single-cell active beam under bending actuation.

the two models even for this weak-actuated beam as shown in Fig. 8. This indicates that discrepancies can
be significant on the predicted behavior of an integrally actuated blade response.

In order to quantify the warping, restrained and main transverse shear effects at the cross-sectional
modeling for this single-cell active blade, a numerical study was performed among the different cross-
sectional analyses. Results are presented in Fig. 9 for the twist distribution along the spanwise coordinate
for a constant applied voltage of 1800 V. The results labeled “duPlessis and Hagood (1996)” are from the
modified Rehfield model, and they include effects of restrained warping and main transverse shear stiffness,
presenting a 7 x 7 stiffness matrix (although not asymptotically correct for generic layups). The 1-D
analysis is linear. The results labeled “6 x 6 Rehfield and Atilgan (1989), G.E. 1-D” refers to stiffness
constants based on the previous formulation but without the restrained warping row and column, reducing
the stiffness matrix from the 7 x 7 to a 6 x 6 matrix, and the present geometrically exact 1-D formulation
(this is not an issue at this point, since the twist is small enough for a linear approximation). Next, the

14" """ duPlessis & Hagood [1996]
&  6*6 Rehfield & Atilgan [1989], G.E. 1-D /e
1.2 = 4*4 Rehfield & Atilgan [1989], G.E. 1-D Y
|7 Present 74
1_
W /
S 0.8
<
= /
£
= 0.6
=
0.4
0.24
[0F 2 o o)

T T T T T T T 1
0 005 01 015 02 025 03 035 04 045
Spanwise Coordinate (m)

Fig. 9. Single-cell active beam twist distribution.
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“4 x 4 Rehfield and Atilgan (1989), G.E. 1-D” has the condensed 4 x 4 stiffness matrix from the previous
6 x 6 formulation, then eliminating the main transverse shear terms. Note that the non-classical coupling
effects due to transverse shear have not been neglected but just condensed. All the above are plotted in Fig.
9 along with the present formulation. As one would expect, the restrained warping effects are minimum for
a closed-cell beam. For this beam, the main transverse shear effects are also not significant, and a 4 x 4
stiffness formulation is sufficient to account for all the major effects for quasi-static behavior.

4.3. Two-cell CH-47D active blade

A one-sixth Mach-scaled two-cell CH-47D helicopter rotor blade with AFC plies embedded within the
front D-spar (Rodgers and Hagood, 1998a) is used to study the actuation constants and global blade
structural behavior of a multi-cell active beam. Two configurations of part of that blade running from the
root to 0.54 radius have been built and tested at MIT. The first involves only the front D-spar, and the
second includes the fairing as well, this making the cross-section of the blade a two-cell configuration. Two
analytical predictions using the modified Rehfield model (duPlessis and Hagood, 1996), which is originally
restricted to single-cell beams, and experimental data from the prototype blade are compared with the
results from the present formulation. The cross-section and spanwise design of CH-47D active blade are
shown in Fig. 10, along with the detailed layup. Even though not explicitly presented there, both cells are
filled with a Rohacell foam for manufacturing reasons, and that core material is not modeled in the present
formulation.

First, consider the stiffness and actuation constants for this blade. Analytical comparison of the Mod-
ified Rehfield analysis with the present formulation is summarized in Table 7 where the cross-sectional
analysis results consider only the front D-spar component that can be modeled as a single-cell cross-section.
It is noticed that the components related to the torsional deformation, such as torsional stiffness Ky and
twisting actuation moment Mfa), are in good agreement with each other. Therefore, this example is another
case in which both analytical models give coinciding results for these components.

9.093" 16.406' 39.402" 60.619'
0.15R 0.27R 0.65R R 1.00R

777777777777777777777777777777 A
|
lead-lag pin -
Spar Laminate
3 plies 45° E-glass .. .
2 plies 0° Graphite,S-glass Fairing Skin

1 ply 45° E-glass Fabric
t=0.0045" (0.11 mm)

3 plies AFC Actuators
t=0.047" (1.19 mm)

trailing edge

| 5.388 ‘l

Web
3 plies 45° E-glass Fabric
t=0.0135" (0.34 mm)

Fig. 10. Schematic diagram of the complete CH-47D active blade section (Rodgers and Hagood, 1998b).
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Table 7
Non-zero stiffness (N, Nm, Nm?) and forcing vector (N, Nm) results for CH-47D D-spar only — (Ki;: 1, extension; 2, torsion; 3, 4,
bending)

Present Modified Rehfield Difference (%)
K 4.662 x 10° 4.663 x 10° —0.01
K —2.947 x 10? —2.948 x 10! —0.02
K»» 8.862 x 10! 8.862 x 10! 0.0
K3 1.793 x 102 1.710 x 102 +4.8
Ky 1.145 x 10 1.142 x 103 +0.28
F® 7.139 % 10! 6.784 x 10! +4.9
M 2.496 2.496 —0.02

Table 8
Non-zero stiffness (N, Nm, Nm?) and forcing vector (N, Nm) results for CH-47D active blade section (front D-spar + fairing) — (Kj;:
1, extension; 2, torsion; 3, 4, bending)

Present Modified Rehfield + ad hoc corrections Difference (%)
K 5.171 x 10° 5.989 x 10° —13.6
Ky —3.012 x 10? —2.948 x 10? +2.2
K» 9.872 x 10! 1.085 x 107 -9.1
Ks3 1.908 x 10° 1.818 x 10? +4.9
Ky 4.390 x 103 3.923 x 103 +11.9
F® 8.442 x 10! 6.784 x 10! +24.4
M 2.362 2312 +2.1

Next, consider the entire cross-section, i.e., front D-spar and fairing. Cross-sectional results are pre-
sented in Table 8. The results associated with “modified Rehfield + ad hoc corrections” are obtained by
combining the analysis results considering the front D-spar and some ‘“appropriate” stiffness constants
corresponding to the remaining components like skin plies of the fairing, core material, and tungsten
weights that are inserted at the nose section. These corrections were introduced by Boeing Helicopter
engineers based on their experience, and it is reported in Rodgers and Hagood (1998b). The correlation is
not as good as in the previous cases due to a more complex cross-sectional construction and the limitation
of the present analysis to thin-walled modeling. A more generic cross-sectional representation that captures
the core material and internal details of the construction (like the one provided by VABS-A (Cesnik and
Ortega-Morales, 1999)) is required for improved accuracy.

Finally, consider the 1-D twist results under actuation for both the D-spar and for the complete cross-
section (including fairing). The twist actuation rates are summarized in Table 9. The “present” results
included the cross-sectional and beam analyses presented here. For the “modified Rehfield” results, only
the D-spar case is available, since its limitation to single-cell analysis. The ‘“‘modified Rehfield +
ad hoc corrections” results are a combination of the single-cell analysis and stiffness corrections (no cor-
rections on the actuation constants, even though they are function of the stiffness as well) provided by
Boeing engineers and reported in Rodgers and Hagood (1998b). For the D-spar only, the result from the
present formulation and the “modified Rehfield” analysis of duPlessis and Hagood (1996) are numerically
identical. This is not a surprise considering the 2-D results presented in Table 7. The “ad hoc™ corrections
to the “modified Rehfield” analysis include mainly the effects of the ballast weights at the nose. These
corrections improve the correlation with the experimental result from an overprediction of 27% down to
14%, however, no asymptotic consistency is present on this process. Now, for the complete section (D-spar
and fairing), the present formulation still presents the same relative level of correlation with the experi-
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ijvli: thuation rate comparison for CH-47D active blade section (D-spar only and full cross-section: analyses and experiment)

D-spar only D-spar + fairing
Twist actuation (°m~')  Difference (%) Twist actuation (°m~')  Difference (%)

Present 3.13 27 2.65 28

Modified Rehfield 3.13 27 - -

Modified Rehfield + 2.81 14 2.55 24

ad hoc corrections

Experiment 2.46 - 2.06 -

mental data. The simple “modified Rehfield” result is not available for the complete section due to the basic
limitation on the formulation. The “modified Rehfield + ad hoc corrections” result shows the closer
correlation with the experimental measurement, but it is now about the same magnitude as the present
formulation, where the effects of the ballast weight or the core material have not been modeled. This change
on the error margin is characteristic of non-asymptotical formulations. Some of the discrepancies found
between the present formulation and the experimental data are primarily caused by the limited capability of
the present analysis to model minor structural members like foam cores and ballast weights. Also, the
experimental twist actuation of the CH-47D active blade may be lower than originally expected from a
flawless construction. After slicing the CH-47D blade and examining the inner structure, it turned out that
some defects developed within the blade during its manufacturing and may have partially degraded its
actuation performance (Rodgers and Hagood, 1998b).

5. Conclusion

An asymptotical formulation for analyzing multi-cell composite helicopter rotor blades with integral
anisotropic active plies was presented for the first time. The analysis derived in this paper consists of two
parts: a linear two-dimensional analysis over the cross-section, and a geometrically non-linear (beam)
analysis along the blade span. A numerical study was conducted to validate the two-cell blade analysis and
the piezoelectric actuation change in the beam constitutive relation. Finite-element-based cross-section
analysis and other closed-form formulation were used for that study. Comparison of the present asymp-
totically correct analytical and numerical results is conducted against a popular assumed-displacement field
cross-sectional analysis. It is shown that qualitative discrepancies are found on the expressions for the
active forcing vector components, and numerical studies show that those discrepancies can indeed be
significant on the predicted behavior of the one-dimensional blade. Experimental data obtained at MIT for
active model blades were used to validate the present formulation. As shown in the results, a very good
correlation with experimental data was obtained with the present formulation. This formulation is now
being applied to design an active twist rotor with active fiber composites for aeroelastic tests at the
Transonic Dynamics Tunnel at NASA Langley.
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Appendix A
A.1. Cross-sectional formulation

In the first part of this appendix, explicit expressions are reported for some of the relevant variables used
in the development, including the stiffness coefficients K;; which have some corrections from the original
ones presented in Badir (1995):

Ky = %(Ai?)ds4a3figds4a4j{lléds,
K12:4a1fi gds+4a2jl{l§ds,

K3 = —][(A—l;)zds—%hj{gds—4agj{lgds,
_7{<A—Bg>yds—4a3?€gds—4a4}€lgds,

Ky = —4a1dq — 4arA.n,
Koy = 4az4.1 + 4asA.,
Ky = —4asAq — 4agA.n,

B? B B
K33 = % (A —E>szs+4d7f; Ezds+4agj€1 EZdS’
B? B B
Ksy = —j{ (A —E>Y~7ds—4a5fi Ezds—4asj{I Esta

B? B B
Kiyy = %(A—E>y2ds+4a57{ Eyds+4a6£16yds,

x
[

where
C3
a = ——,
Cq
(b1 + bz)al + b4
ay = b—27
(&)
a = ——,
C1
(b1 + by)cq + by
a4 = b—za
b5 fl bde + b2d1
as = 6—17
bl + b2 fibyds
— d. —
ag ( b2 ) 3 bz )
b5 §IbZdS+b2dz
) = ——

€]

by
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and
B(s)

b= =264

by = 4/‘ c(s)ds,
0
b, = 4/A c(s)ds,

by = j{b(s)d&

by = —24.,

bs = 4/‘- c(s)ds,

7{ b(s)ds,
1l

bs =
b7: _ZAeIIa
L1
C(s)
by + b2)b
Clzbl—f—i( 1+ 2) 57
by
bsyb
¢ = by +bs+——,
by
bybs

C3:b4+b7+b—’

2
d :j(){ byds,
I+11

d, = 7{ bzds,
I+

b5ﬁbyd5‘+b2d1

dy = ————
€l

bsﬁbZdS-szdz

dy= =" T 72
€1

e = biby + (by + by)bs.

A.2. 1-D blade formulation

Consider the expressions of the element functions (Shang and Hodges, 1995) presented in Eq. (32) and
modified due to the inclusion of the piezoelectric forcing vector. If one writes the inverse of the constitutive
relation, Eq. (28) as

G-l
K s My + MY [

then the modified element functions can be written explicitly as
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fy = —cTcabM—Azl"cTcab[ { £+ F® +t(M+M(a>) HF+
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A
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